CORE PYTHON

CHEATSHEETS

Core Python

TABLE OF CONTENTS

Preface
Introduction
Modules and Packages
Data Manipulation and Analysis
Data Visualization
Machine Learning
Web Development
Game Development
Installing New Packages
Data Types and Variables
Strings
Operators
Sequence Unpacking
Conditional Statements
if statement
if-else statement
if-elif-else statement
Loops
for loop
while loop
Functions
Function Definition
Function Call
Optional Arguments
Variable-Length Arguments
Keyword Arguments
Default Argument Values
Anonymous Functions (Lambda Functions)
Variable Scope
Lists
List methods
Dictionaries
Dictionary methods
Tuples
Sets
Set methods

N T 9 NN 0 0Oy OOy Ul Ul gl Ul Ul Ul W0 Ww W NN NN

JAVACODEGEEKS.COM VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

CORE PYTHON

CHEATSHEETS

Input and Output 7
Input 7
Output 7

File Handling 7
Opening a file 7
Reading from a file 7
Writing to a file 7
Closing a file 8

Exception Handling 8

Classes and Objects 8
Classes 8
Objects 8
@classmethod decorator 8
Inheritance 8
Magic methods 9
Comments and Docstrings 9

Modules and Packages 10
Modules 10
Packages 10

Lambda Functions 10

List Comprehensions 10

Generators 10

Decorators 10

Map, Filter, and Reduce 11
Map 11
Filter 11
Reduce 11

String Formatting 11

Regular Expressions 11
Functions 11
Metacharacters 11

JAVACODEGEEKS.COM VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

CHEATSHEETS

PREFACE

This cheatsheet is intended to serve as a quick
reference guide for Python programming. It covers
some of the most commonly used syntax and
features of the language, including data types,
control structures, functions, modules, and
libraries.

Whether you are a beginner learning Python for
the first time or an experienced programmer
looking for a quick refresher, this cheatsheet should
be a helpful resource for you.

INTRODUCTION

Python is a high-level, interpreted programming
language known for its simplicity, readability, and
versatility. It was first released in 1991 by Guido
van Rossum and has since become one of the most
popular programming languages in the world.

Python’s syntax emphasizes readability, with code
written in a clear and concise manner using
whitespace and indentation to define blocks of
code. It is an interpreted language, meaning that
code is executed line-by-line rather than compiled
into machine code. This makes it easy to write and
test code quickly, without needing to worry about
the details of low-level hardware.

Python is a general-purpose language, meaning that
it can be used for a wide variety of applications,
from web development to scientific computing to
artificial intelligence and machine learning. Its
simplicity and ease of use make it a popular choice
for beginners, while its power and flexibility make
it a favorite of experienced developers.

Python’s standard library contains a wide range of
modules and packages, providing support for
everything from basic data types and control
structures to advanced data manipulation and
visualization. Additionally, there are countless
third-party packages available through Python’s
package manager, pip, allowing developers to easily
extend Python’s capabilities to suit their needs.

Overall, Python’s combination of simplicity, power,
and flexibility makes it an ideal language for a wide
range of applications and skill levels.

JAVACODEGEEKS.COM

CORE PYTHON

MODULES AND PACKAGES

DATA MANIPULATION AND ANALYSIS

NumPy

NumPy is a powerful package for scientific
computing in Python. It provides support for large,
multi-dimensional arrays and matrices, along with
a wide range of mathematical functions to
manipulate and analyze the data. NumPy is a
fundamental package for scientific computing with
Python and is widely used in the data science and
machine learning communities.

Pandas

Pandas is a library for data manipulation and
analysis. It provides data structures for efficiently
storing and querying large data sets, along with a
wide range of functions for cleaning, transforming,
and analyzing data. Pandas is a key tool for data
scientists and analysts working with tabular data.

SciPy

SciPy is a Python library for scientific computing
and technical computing. It provides a large set of
mathematical algorithms and functions for tasks
such as optimization, integration, interpolation,
signal processing, linear algebra, and more.

DATA VISUALIZATION

Matplotlib

Matplotlib is a plotting library for Python. It
provides a range of functions for creating high-
quality visualizations of data, including line charts,
scatter plots, histograms, and more. Matplotlib is
widely used in scientific computing, data
visualization, and machine learning.

Seaborn

Seaborn is a Python data visualization library that
is built on top of the popular visualization library,
Matplotlib. It provides a high-level interface for
creating beautiful and statistical
graphics. Seaborn is designed to work with data in
a Pandas DataFrame and provides a range of tools
for visualizing relationships between variables.

informative

VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

CHEATSHEETS

MACHINE LEARNING

Scikit-learn

Scikit-learn is a library for machine learning in
Python. It provides a range of functions for
classification, regression, clustering, and
dimensionality reduction, along with tools for
model selection and evaluation. Scikit-learn is a
popular choice for building and deploying machine
learning models in Python.

TensorFlow

TensorFlow is a library for building and training
machine learning models, particularly deep
learning models. It provides support for building
and training neural networks, along with a range of
tools for model evaluation and deployment.
TensorFlow is widely used in the machine learning
and data science communities.

WEB DEVELOPMENT

Flask

Flask is a micro web framework for Python. It
provides a range of tools for building web
applications, including routing, templates, and
request handling. Flask is a lightweight and flexible
framework that is widely used for building web
applications and APIs in Python.

Django

Django is a high-level web framework for Python
that follows the Model-View-Controller (MVC)
architectural pattern. It provides a powerful set of
tools for building web applications, including a
robust Object-Relational Mapping (ORM) system, a
templating engine, and built-in support for
handling user authentication and authorization.

GAME DEVELOPMENT

Pygame

Pygame is a set of Python modules for creating
video games and multimedia applications. It
provides support for graphics, sound, input, and
networking, making it easy to create games and
interactive applications in Python.

JAVACODEGEEKS.COM

CORE PYTHON

Arcade

Arcade is a Python library for creating 2D arcade-
style video games. It is built on top of the Pygame
library and provides an easy-to-use framework for
building games with modern graphics and sound
effects. Its cross-platform support (it works on
Windows, Mac, and Linux), its support for both 2D
and 3D graphics, and its active community of
developers who are constantly creating new games
and tools using the library.

INSTALLING NEW PACKAGES

Using pip

pip is the package installer for Python. You can use
it to install new libraries by running the following
command in your terminal or command prompt:

pip install <library-name>

Replace <library-name> with the name of the
library you want to install. For example, to install
the numpy library, run:

pip install numpy

Using Anaconda

If you use Anaconda as your Python distribution,
you can use the Anaconda Navigator or the
command line interface conda to install new
libraries. For example, to install the numpy library,
run:

conda install numpy

Manually

You can download the source code of a library from
its website or GitHub repository and install it
manually by following the installation instructions
provided by the library’s documentation.

Once you have installed a new library, you can
import it into your Python code using the import
statement. For example, to import the numpy

VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

LULI CORE PYTHON

CHEATSHEETS

library, you can use: my_string = "hello world"

Getting the length of a string

import numpy length = len(my_string) # Output:

11
Or you can use an alias to the library name for a
shorter reference: # Accessing individual characters
first_char = my_string[@] # Output:
. Ilhll
mport numpy as np last_char = my_string[-1] # Output:
n d n

DATA TYPES AND VARIABLES .. :
Slicing a string

Python is a dynamically typed language. This = substring = my_string[@:5] #
means that the data type of a variable is OUtPUt: "hello"

determined at runtime based on the value that is

assigned to it. In other words, you don’t need to it Concatenating strings

specify the data type of a variable when you declare new_string = my_string + "!" #
it, and you can assign values of different data types Output: "hello world!"

to the same variable.

Repeating a string

5 # x is an integer repeat_string = my_string * 3 #
"hello" # x is now a string Output: "hello worldhello worldhello

3.14 # x is now a float wor1d"

Strings in Python are immutable, which means that
once you create a string, you cannot change its
contents. However, you can create a new string that
contains the modified content.

e Integers: whole numbers without decimal
points. e.g. 1,2, 3,4,5

e Floats: numbers with decimal points. e.g. 3.14,
4.5,6.0

String formatting is another important feature in

Python, which allows you to insert values into a

string in a specific format.

* Strings: sequences of characters. e.g. "hello",
'world'

Booleans: True or False values.

 Variables: containers for storing values. e.g. x =

_n g n
10,y = "hello" name = "Alice

age = 30

greeting = "My name is {} and I am
{} years old".format(name, age)
Strings are sequences of characters enclosed in print(greeting) # Output: "My name
single quotes ' or double quotes ". They are one of = is Alice and I am 30 years old"

the fundamental data types in Python and are used

to represent text and other types of data that can be

represented as a sequence of characters. OPERATORS

STRINGS

Here are some basic operations that can be * Arithmetic operators: +, -, , /, % (modulus),*
performed on strings: (exponentiation)
» Comparison operators: == (equals), != (not
Creating a string equals), >, <, >=, <

JAVACODEGEEKS.COM VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

CHEATSHEETS

CORE PYTHON

 Logical operators: and, or, not

SEQUENCE UNPACKING

Sequence unpacking is a feature in Python that
allows you to assign the elements of a sequence
(such as a tuple or a list) to individual variables. It
provides a convenient way to assign multiple
values to multiple variables in a single statement.

my_tuple = (1, 2, 3)
a, b, ¢ = my_tuple

print(a) # Output: 1
print(b) # Output: 2
print(c) # Output: 3

In this example, we define a tuple called my_tuple
that contains three elements. We then use sequence
unpacking to assign each element to a separate
variables a, b, and c.

Sequence unpacking also works with lists:

my_list = [4, 5, 6]
X, Yy, z = my_list
print(x) # Output: 4
print(y) # Output: 5
print(z) # Output: 6

You can also use sequence unpacking to swap the
values of two variables without using a temporary
variable:

a =1

b =2

a, b=>b, a

print(a) # Output: 2
print(b) # Output: 1

CONDITIONAL STATEMENTS

IF STATEMENT

Executes a block of code if a condition is true.

if condition:

JAVACODEGEEKS.COM

code to execute if condition
is true

IF-ELSE STATEMENT

Executes a block of code if a condition is true, and
another block if it’s false.

if condition:

code to execute if condition
is true
else:

code to execute if condition
is false

IF-ELIF-ELSE STATEMENT

Executes a block of code based on multiple
conditions.

if conditionl:

code to execute if conditionT
is true
elif condition2:

code to execute if condition2
is true
else:

code to execute if all
conditions are false

LOOPS

FOR LOOP

Iterates over a sequence of values.

for value in sequence:
#f code to execute for each value
in sequence

WHILE LOOP

Executes a block of code as long as a condition is
true.

VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

CHEATSHEETS

CORE PYTHON

while condition:
code to execute while
condition is true

FUNCTIONS

FUNCTION DEFINITION

Blocks of code that perform a specific task. A
function in Python is defined using the def keyword
followed by the function name and a set of
parentheses. Any input parameters or arguments
should be placed inside the parentheses. The
function body should be indented and can contain
one or more statements. The return statement is
used to return a value from the function to the
calling code.

def function_name(parameters):
code to execute
return value

FUNCTION CALL

result = function_name(arqgument1,
argument2, ...)

OPTIONAL ARGUMENTS

result = def
function_name(parameter?,
parameter2=default_value, ...):
function body
return value

VARIABLE-LENGTH ARGUMENTS

def function_name(*args):
function body
return value

JAVACODEGEEKS.COM

KEYWORD ARGUMENTS

def function_name(parameter1,
parameter2, ..., keywordl=valuel,
keyword2=value2, ...):

function body

return value

DEFAULT ARGUMENT VALUES

def function_name(parameter1,
parameter2=default_value):

function body

return value

ANONYMOUS FUNCTIONS (LAMBDA
FUNCTIONS)

lambda arquments: expression

VARIABLE SCOPE

Global variable
variable_name = value

def function_name():
Local variable

variable_name = value

LISTS

Ordered collections of items.

my_list = [item1, item2, item3]

LIST METHODS

my_list.append(item) # adds an item
to the end of the list
my_list.insert(index, item) #
inserts an item at a specific index

my_list.pop() # removes and returns

VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

LULG CORE PYTHON

CHEATSHEETS

the last item in the list returns a new set with items that

my_list.remove(item) # removes the are common to both sets
first occurrence of an item

INPUT AND OUTPUT
DICTIONARIES

INPUT

Unordered collections of key-value pairs.
Allows a user to enter data into a program.

my_dict = {"key1": valuel, "key2":

value?, "key3": value3} input_string = input("Enter a value:
n)
DICTIONARY METHODS
OUTPUT
my_dict.keys() # returns a list of Displays data to a user.
keys
my_dict.values() # returns a list

of values print("Hello, world!")

my_dict.items() # returns a list of

SIS [FILE HANDLING
TUPLES OPENING A FILE

Ordered collections of items that cannot be changed

(immutable). file = open("filename.txt", "r") #

open file for reading
file = open("filename.txt", "w") #
my_tuple = (item1, item2, item3) open file for writing

SETS READING FROM A FILE

Unordered collections of unique items.

file.read() # reads

file_contents
entire file

my_set = {item1, item2, item3} file_contents = file.readline() #
reads one line of file

SET METHODS
WRITING TO A FILE
my_set.add(item) # adds an item to
the set file.write("Hello, world!") #
my_set.remove(item) # removes an writes string to file

item from the set
my_set.union(other_set) # returns a
new set with all unique items from
both sets
my_set.intersection(other_set) #

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

CHEATSHEETS

CORE PYTHON

CLOSING A FILE

file.close() # closes file

EXCEPTION HANDLING

Errors that occur during program execution.

try:

code that might raise an
exception
except ExceptionType:

code to execute if exception
occurs
finally:

code to execute regardless of
whether an exception occurred

CLASSES AND OBJECTS

CLASSES

In Python, a class is a blueprint for creating objects.
It defines a set of attributes and methods that the
objects will have. When you create an instance of a
class, you create a new object that has the same
attributes and methods as the class.

class Person:
def __init__(self, name, age):
self.name = name
self.age = age

def say_hello(self):
print("Hello, my name is",

self.name, "and I'm", self.age,
"years old.")
OBJECTS

Instances of a class with specific values for their
attributes. To create an instance of the Person class,
we use the constructor method ‘init® which
initializes the object’s attributes. We then call the
say_hello method on each object to print the
greeting message.

JAVACODEGEEKS.COM

Person("Alice", 25)
Person("Bob", 30)

personl =
person? =

persont.say_hello()
person2.say_hello()

@CLASSMETHOD DECORATOR

In Python, the @classmethod decorator is used to
define class methods. A class method is a method
that is bound to the class and not the instance of the
class. It can be called on the class itself, rather than
on an instance of the class.

class MyClass:

class_var = "This is a class
variable"
def __init__(self, x):
self.x = x
@classmethod

def class_method(cls):
print(cls.class_var)

MyClass.class_method()

To define a class method, we use the @classmethod
decorator before the method definition. The first
parameter of a class method is always cls, which
refers to the class itself. You can use the cls
parameter to access class variables and methods.

INHERITANCE

Classes can also inherit attributes and methods
from other classes.

class Student(Person):
def __init__(self, name, age,
grade):
super().__init__(name, age)
self.grade = grade

def say_hello(self):
print(f"Hello, my name is
{self.name}, I am {self.age} years

VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

CHEATSHEETS

old, and I am in grade
{self.grade}.")

MAGIC METHODS

Python also supports a number of special methods,
called "magic methods" or "dunder methods" (short
for "double underscore methods"), that allow you to
customize the behavior of objects of a class. These
methods have names that start and end with double
underscores

e init(self[,
the class

++]) Initializes a new instance of

e str(self) Defines the string representation of
an object

e repr(self) Defines the string representation of
an object that can be used to recreate the object

e eq(self, other) Defines how two objects are
compared for equality using the == operator

o 1t(self, other) Defines how two objects are
compared for less-than using the < operator

* len(self) Defines the behavior of the 1len()
function for an object

key) Defines how an object is
square brackets, e.g.

o getitem(self,
accessed using
my_object[key]

e setitem(self, key, value) Defines how an
object is modified using square brackets, e.g.
my_object[key] = value

o delitem(self, key) Defines how an object is
deleted using the del keyword and square
brackets, e.g. del my_object[key]

e getattr(self, name) Defines how an attribute
that doesn’t exist on the object is accessed, e.g.
my_object.foo

e setattr(self, name, value) Defines how an
attribute is set on the object, e.g. my_object.foo
= 42

e delattr(self, name) Defines how an attribute is
deleted from the object, e.g. del my_object.foo

e call(self[, ---]) Allows an object to be called
like a function, e.g. my_object()

JAVACODEGEEKS.COM

CORE PYTHON

COMMENTS AND DOCSTRINGS

Comments and docstrings are two important ways
to document your code in Python. While comments
are used to provide explanations for specific lines
or blocks of code, docstrings are used to provide
documentation for functions, classes, and modules.

Comments

Comments in Python start with the # symbol and
can be used to provide explanations for specific
lines of code:

This is a comment
x =1 # This is another comment

In this example, we use comments to explain what
the code does. Comments are ignored by the Python
interpreter and are not executed as code.

Docstrings

Docstrings, on the other hand, are wused to
document functions, classes, and modules. They are
enclosed in triple quotes """, and should describe
what the function does, what arguments it takes,

and what it returns:

def add_numbers(a, b):
This function adds two numbers and
returns the result.
Parameters:

a (int): The first number to
add.

b (int): The second number to
add.

Returns:
int: The sum of a and b.

return a + b

In this example, we define a function called
add_numbers and provide a docstring that
describes what the function does, what arguments
it takes, and what it returns. The docstring should
be placed immediately after the function definition.

VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

CHEATSHEETS

CORE PYTHON

Docstrings are important because they make it
easier for other programmers (and your future self)
to understand what your code does and how to use
it. They can be accessed using the help() function or
by using the built-in doc attribute.

MODULES AND PACKAGES

MODULES

Files containing Python code that can be imported
and used in other programs.

import my_module

my_module.my_function() # calls a
function from the module

PACKAGES
Collections of related modules that can be imported

together.

import my_package.my_module

my_package.my_module.my_function()
calls a function from the module
in the package

LAMBDA FUNCTIONS

Anonymous functions that can be defined in a
single line of code.

my_lambda = lambda x: x**2 #
defines a lambda function that
squares its input

result = my_lambda(3) # calls the
lambda function with input 3

LIST COMPREHENSIONS

Compact syntax for creating lists based on other
lists or sequences.

JAVACODEGEEKS.COM

my_list = [x**2 for x in range(5)]
creates a list of squares of
numbers 0-4

even_numbers = [x for x in my_list
if x% 2 == 0] # creates a list of
even numbers from my_list

GENERATORS

Functions that use the yield keyword to return
values one at a time, instead of all at once.

def my_generator():
yield 1
yield 2
yield 3

for value in my_generator():
code to execute for each value
returned by the generator

DECORATORS

Functions that modify the behavior of other
functions.

def my_decorator(func):
def wrapper(*args, **kwargs):
code to execute before the
original function
result = func(*args,
**kwargs) # call the original
function
code to execute after the
original function
return result
return wrapper

@my_decorator
def my_function():
code to execute

VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

LULI CORE PYTHON

CHEATSHEETS

MAP, FILTER, AND REDUCE STRING FORMATTING

MAP AlloYv§ values to be inserted into a string in a
specific format.

Applies a function to every element in a sequence

and returns a new sequence with the results. Wra e m
name = "Alice

age = 30
def square(x): greeting = "Hello, my name is {} and
return x**2 I am {} years old.".format(name,
age) # creates a string with values
my_list = [1, 2, 3, 4] inserted using curly braces

squared_list = map(square, my_list)

creates a new list with squares of
the original values REGULAR EXPRESSIONS

Regular expressions, also known as regex or
FILTER regexp, are a sequence of characters that define a
search pattern. They are powerful tools used to

and returns a new sequence with only the elements Programming languages such as Python. In Python,

that pass a certain test. the re module provides support for regular
expressions.
def is_even(x): FUNCTIONS

return x % 2 ==
* re.search(pattern, string): Searches for the
my_list = [1, 2, 3, 4] first occurrence of the pattern in the string and
filter(is_even, my_11' st) returns a match object if found. If not found, it
returns None.

even_list
creates a new list with only the
even values from the original list

re.findall(pattern, string): Searches for all
occurrences of the pattern in the string and
returns a list of all matches found.

REDUCE

re.sub(pattern, repl, string): Searches for all
occurrences of the pattern in the string and

Applies a function to pairs of elements in a) .
replaces them with the repl string.

sequence and returns a single result.

METACHARACTERS

from functools import reduce
¢ . (dot): Matches any character except a newline

character.

def my_function(x, y):
return x + vy » /(caret): Matches the start of a string.

. $ (dollar): Matches the end of a string.
my_list = [1, 2, 3, 4]

result = reduce(my_function,
my_list) # adds up all the values

in the list to get a single result * + (plus): Matches one or more occurrences of
the preceding character.

* * (asterisk): Matches zero or more occurrences
of the preceding character.

* 7 (question mark): Matches zero or one
occurrence of the preceding character.

JAVACODEGEEKS.COM VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

LULI CORE PYTHON

CHEATSHEETS

e [] (square brackets): Matches any one of the
characters enclosed in the brackets.

* | (pipe): Matches either the expression before
or after the pipe.

import re

Search for a pattern in a string
text = "The quick brown fox jumps
over the lazy dog"
match = re.search(r"brown", text)
if match:

print("Match found!")

Find all occurrences of a pattern
in a string

text = "The quick brown fox jumps
over the lazy dog"

matches = re.findall(r"the", text,
re.IGNORECASE)

print(matches)

#f Replace all occurrences of a
pattern in a string

text = "The quick brown fox jumps
over the lazy dog"

new_text = re.sub(r"the", "that",
text, flags=re.IGNORECASE)
print(new_text)

(5 Java Code Geeks

JCG delivers over 1 million pages each month to more than 700K software
developers, architects and decision makers. JCG offers something for everyone,
including news, tutorials, cheat sheets, research guides, feature articles, source code

and more.
CHEATSHEET FEEDBACK
WELCOME
support@javacodegeeks.com
Copyright © 2014 Exelixis Media P.C. All rights reserved. No part of this publication may be SPONSORSHIP
reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic OPPORTUNITIES
mechanical, photocopying, or otherwise, without prior written permission of the publisher sales@javacodegeeks.com

JAVACODEGEEKS.COM VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

	Core-Python-Cheatsheet
	Core Python
	Table of Contents
	Preface
	Introduction
	Modules and Packages
	Data Manipulation and Analysis
	Data Visualization
	Machine Learning
	Web Development
	Game Development
	Installing New Packages

	Data Types and Variables
	Strings

	Operators
	Sequence Unpacking
	Conditional Statements
	if statement
	if-else statement
	if-elif-else statement

	Loops
	for loop
	while loop

	Functions
	Function Definition
	Function Call
	Optional Arguments
	Variable-Length Arguments
	Keyword Arguments
	Default Argument Values
	Anonymous Functions (Lambda Functions)
	Variable Scope

	Lists
	List methods

	Dictionaries
	Dictionary methods

	Tuples
	Sets
	Set methods

	Input and Output
	Input
	Output

	File Handling
	Opening a file
	Reading from a file
	Writing to a file
	Closing a file

	Exception Handling
	Classes and Objects
	Classes
	Objects
	@classmethod decorator
	Inheritance
	Magic methods
	Comments and Docstrings

	Modules and Packages
	Modules
	Packages

	Lambda Functions
	List Comprehensions
	Generators
	Decorators
	Map, Filter, and Reduce
	Map
	Filter
	Reduce

	String Formatting
	Regular Expressions
	Functions
	Metacharacters

	cheatsheet ending

